79 resultados para Fishery oceanography. Hydrologic factors

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25-26 °C. The bloom with a high Chl-a concentration (6.5 mg m-3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22-23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive survey of the benthic assemblages of the Torres Strait was conducted in order to provide critical baseline information for regional marine planning, assessing the environmental sustainability of fisheries and understanding the ecosystems of the region. Over 150 sites throughout the region were sampled with a modified prawn trawl, towed underwater video, pipe dredge and epibenthic sled. This manuscript provides a broad overview of the activities undertaken and data collected. Two thousand three hundred and seventy-two different nominal species were sampled by the trawl and sled, only 728 by both gears. The towed video was not able to provide the same level of taxonomic resolution of epibenthic taxa, but was particularly useful in areas where the seabed was too rough to be sampled. Data from the trawl, sled and video were combined to characterise the epibenthic assemblages of the region. Data from the towed video was also used to provide a characterisation of the inter-reefal benthic habitats, which was then analysed in combination with physical covariate data to examine relationships between the two. Levels of mud and gravel in the sediments, trawling effort and seabed current stress were the covariates most significantly correlated with the nature of the seabed habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project examined coastal and physical oceanographic influences on the catch rates of coral trout (Plectropomus leopardus) and saucer scallops (Amusium balloti) in Queensland. The research was undertaken to explain variation observed in the catches, and to improve quantitative assessment of the stocks and management advice. 3.1 OBJECTIVES 1. Review recent advances in the study of physical oceanographic influences on fisheries catch data, and describe the major physical oceanographic features that are likely to influence Queensland reef fish and saucer scallops. 2. Collate Queensland’s physical oceanographic data and fisheries (i.e. reef fish and saucer scallops) data. 3. Develop stochastic population models for reef fish and saucer scallops, which can link physical oceanographic features (e.g. sea surface temperature anomalies) to catch rates, biological parameters (e.g. growth, reproduction, natural mortality) and ecological aspects (e.g. spatial distribution).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When tropical cyclone Larry crossed the Queensland coast on 20 March 2006, commercial, recreational and naval vessels in the port of Cairns, 60 km north of the eye of the cyclone and others closer to the eye, were protected from the destructive winds by sheltering in deep mangrove creeks in Trinity Inlet and off other coastal rivers. The Trinity Inlet mangroves are protected under the comprehensive multi-use Trinity Inlet Management Plan, agreed by the local and state government agencies (Cairns City Council, the Cairns Port Authority and the Queensland Government). Using this Australian example and one from the town of Palompon in Leyte province, central Philippines, we show how long-term mangrove habitat protection resulting from well-conceived coastal planning can deliver important economic and infrastructure benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This application was developed in response to the widely recognised concern that climate change will result in changes to marine life and ecosystems, and hence fisheries, throughout Australia with tropical marine ecosystems in northern Australia identified as being particularly vulnerable. These changes are predicted to vary spatially depending on local climate and biophysical processes. Northern Australia is one of three major Australian regions predicted to be impacted. The project addresses the important FRDC strategic challenge of improving the management of aquatic natural resources to ensure their sustainability through research and management that accounts for the effects that climate change may have on the resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six species of line-caught coral reef fish (Plectropomus spp., Lethrinus miniatus, Lethrinus laticaudis, Lutjanus sebae, Lutjanus malabaricus and Lutjanus erythropterus) were tagged by members of the Australian National Sportsfishing Association (ANSA) in Queensland between 1986 and 2003. Of the 14,757 fish tagged, 1607 were recaptured and we analysed these data to describe movement and determine factors likely to impact release survival. All species were classified as residents since over 80% of recaptures for each species occurred within 1 km of the release site. Few individuals (range 0.8-5%) were recaptured more than 20 km from their release point. L. sebae had a higher recapture rate (19.9%) than the other species studied (range 2.1-11.7%). Venting swimbladder gases, regardless of whether or not fish appeared to be suffering from barotrauma, significantly enhanced (P < 0.05) the survival of L. sebae and L. malabaricus but had no significant effect (P > 0.05) on L. erythropterus. The condition of fish on release, subjectively assessed by anglers, was only a significant effect on recapture rate for L. sebae where fish in "fair" condition had less than half the recapture rate of those assessed as in "excellent" or "good" condition. The recapture rate of L. sebae and L. laticaudis was significantly (P < 0.05) affected by depth with recapture rate declining in depths exceeding 30 m. Overall, the results showed that depth of capture, release condition and treatment for barotrauma influenced recapture rate for some species but these effects were not consistent across all species studied. Recommendations were made to the ANSA tagging clubs to record additional information such as injury, hooking location and hook type to enable a more comprehensive future assessment of the factors influencing release survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deficiencies in sardine post-harvest handling methods were seen as major impediments to development of a value-adding sector supplying Australian bait and human consumption markets. Factors affecting sardine deterioration rates in the immediate post-harvest period were investigated and recommendations made for alternative handling procedures to optimise sardine quality. Net to factory sampling showed that post-mortem autolysis was probably caused by digestive enzyme activity contributing to the observed temporal increase in sardine Quality Index. Belly burst was not an issue. Sardine quality could be maintained by reducing tank loading, and rapid temperature reduction using dedicated, on-board value-adding tanks. Fish should be iced between the jetty and the processing factory, and transport bins chilled using an efficient cooling medium such as flow ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many fisheries, there is a need to develop appropriate indicators, methodologies, and rules for sustainably harvesting marine resources. Complexities of scientific and financial factors often prevent addressing these, but new methodologies offer significant improvements on current and historical approaches. The Australian spanner crab fishery is used to demonstrate this. Between 1999 and 2006, an empirical management procedure using linear regression of fishery catch rates was used to set the annual total allowable catch (quota). A 6-year increasing trend in catch rates revealed shortcomings in the methodology, with a 68% increase in quota calculated for the 2007 fishing year. This large quota increase was prevented by management decision rules. A revised empirical management procedure was developed subsequently, and it achieved a better balance between responsiveness and stability. Simulations identified precautionary harvest and catch rate baselines to set quotas that ensured sustainable crab biomass and favourable performance for management and industry. The management procedure was simple to follow, cost-effective, robust to strong trends and changes in catch rates, and adaptable for use in many fisheries. Application of such “tried-and-tested” empirical systems will allow improved management of both data-limited and data-rich fisheries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying the stress factors imposed on mud crab to develop stress minimisation practices for improving survival, hence increasing revenue for the industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An economic survey of the commercial operators currently active in the Queensland Coral Reef Fin-Fish Fishery has been carried out, as part of a research project aimed at evaluating alternative management options for this fishery. This paper presents the background analysis used as a basis to develop the sampling design for this survey. The background analysis focuses on activity patterns of the fleet based on effort and catch information, as well as patterns of quota ownership. Based on this information, a fishing business profile describing the micro-economic structure of fishing operations is developed. This profile, in conjunction with the qualitative information gained in undertaking the economic surveys, allows preliminary understanding of the key drivers of profitability in the CRFFF, and possible impacts of external factors on fishing operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the coastal region of central Queensland female red-spot king prawns, P. longistylus, and the western or blue-leg king prawns, P. latisulcatus, had high mean ovary weights and high proportions of advanced ovary development during the winter months of July and August of 1985 and 1986. On the basis of insemination, both species began copulating at the size of 26-27 mm CL, but P. longistylus matured and spawned at a smaller size than P. latisulcatus. Abundance of P. longistylus was generally three to four times greater than that of P. latisulcatus but the latter was subject to greater variation in abundance. Low mean ovary weight and low proportions of females with advanced ovaries were associated with the maximum mean bottom sea-water temperature (28.5ºC) for both species. Population fecundity indices indicated that peaks in yolk or egg production (a) displayed a similar pattern for both species, (b) varied in timing from year to year for both species and (c) were strongly influenced by abundance. Generally, sample estimates of abundance and commercial catch rates (CPUE) showed similar trends. Differences between the two may have been due to changes in targeted commercial effort in this multi-species fishery.